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A modified boundary integral (BIE) method which facilitates accurate solution of
Lapiacian boundary-value problems is presented. This method is designed specifically for
treatment of problems in which singularities occur on the interface between two regions with
different physical properties, and is illustrated by application to two physical problems.
Analytic expressions for the integrals arising in the piecewise-linear and piecewise-quadratic
BIE approximations are also presented. These analytical expressions afford an appreciable
reduction in computational time when compared with previously employed quadrature for
mulae.

INTRODUCTION

Elliptic boundary-value problems arising from the examination of physical
situations encountered in engineering and mathematica! physics are, in general,
intractable by analytical treatment. Although various numerical techniques have been
proposed for the solution of such problems, e.g., the finite difference |1]. finite
element [2], and boundary integral equation (BIE) {3| methods, standard forms of
these techniques tend to yield inaccurate solutions for problems involving boundary
singularities. Consequently, the possibility of modifying these numerical techniques to
give special treatment to singular points, and thereby to obtain solutions which
converge more rapidly has received considerable attention {3-i0].

Symm {31 devised a modification of the BIE method which can successfuily treat
boundary singularities in two-dimensional Laplacian problems. The results obtained
by employing this method offer considerable improvement over those given by
Galerkin methods modified by either mesh refinement near the singularity, or
inclusion of terms having the analytical form of the singularity [3,6]. The present
investigation considers problems in which the boundary singularities occur on the
interface between two regions with different physical properties, e.g., different thermal
conductivities in heat diffusion problems {11], and different dielectric permittivities in
electromagnetics [4]. Blue [14] discussed how the BIE techniques may be applied to
multiple-region problems and indicated that this would require a significant change in
data structure in comparison with single-region problems. In this study these BIE
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techniques are implemented and then extended, in a manner analogous to the
modification devised by Symm [3], to incorporate the analytical form of the
singularity and thereby to facilitate a more accurate solution. In order to illustrate the
solution capailities of this singular BIE method two problem which involve L-shaped
domains with mixed boundary conditions are examined. Solutions are cntrasted with
those obtained by employing standard piecewise-constant, piecewise-linear and
piecewise-quadratic BIE implementations. Furthermore, previously undetermined
analytical solutions for the integrals associated with the piecewise-linear and
piecewise-quadratic BIE formulations are presented. The use of these analytical
expressions instead of quadrature formutae [13) not only reduces the programming
complexity but also results in substantial reductions in the computational time.

THE STANDARD BIE METHODS

As detailed descriptions of the various BIE formulations for obtaining solutions to
plane potential boundary-value problems have previously been presented (3, 12, 13|,
only those features necessary to facilitate a concise explanation of the proposed
modifications, are presented in this study.

For any sufficiently smooth function ¢ which satisfies Laplace’s equation in a
plane domain £2, having a piecewise-smooth boundary 52, Green’s Integral Formula
may be expressed as

[, @0’ Ip—al=¢'(q)log|p —gl) dg =n(p) $(p). (1)

where
(i) pEN+02, g€
(i) dg denotes the differential increment of 022 at g.

(iti) The prime ' denotes the derivative in the direction of the outward normal
to 02 at q.

(iv) If p € Q2 then n =2z, and if p € 62 then 7 is the internal angle included
between the tangents to 92 on either side of p.

If either ¢, ¢’ or a linear combination of ¢ and ¢’ is prescribed at each point of 242,
then solution of the equation

[, {9@)1oe'1a |~ ¢'(@) o817 —ql} da —1(@) 6@ =0,
$4€602, (2)

determines ¢ and ¢’ at each point of 92. The potential ¢ at any point p € (2 + 2£2)
can then be computed employing Green’s Integral Formula, Eq. (1).
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Thus, application of Green’s Boundary Formula, Eq. (2), enables well-posed two-
dimensional Laplacian boundary-value problems to be reformulated as integral
equations in which the unknowns are boundary values of the potential, ¢, and its
normal derivative, ¢’, complementary to those prescribed by the boundary conditions.
However, in practice these integral equations can rarely be solved analytically, and
therefore various numerical techniques have been proposed to enable application of
Green’s Boundary Formula (3, 12, 13].

In the classical BIE (CBIE) method (3], the boundary 902 is subdivided into
smooth intervals, 92;, j = 1,.., N, on which ¢ and ¢’ are approximated by piecewise-
constant functions ¢; and ¢;. Application of the corresponding discretized form of the
Integra! Formula,

N -
S 18] log'|p—qldg—¢;| log|p—alda =n(p)é(p)
j=1 2 C50;

pEN+LEQ, qeén. (3)

to the midpoint, p=gq;, of each interval and enforcing the boundary conditions,
generates a system of linear algebraic equations. Solution of these equations
determines ¢; and ¢; on each interval. The solution at any interior point can then be
computed by a relatively simple quadrature, Eq. (3).

The linear BIE (LBIE) method, affords a slightly more sophisticated approx-
imation of Green’s Integral Formula than the classical BIE method. On each interval
09;,j=1,., N, ¢ and ¢’ are approximated by piecewise-linear functions

¢=(1-¢ ¢((Ij) + é¢(‘1]+ ")
¢'=(1—28)o'(q;) +80'(g;. 1),

where g; and g, , are the endpoints of 922;, and ¢ is a linear function which increases
from zero at g; to unity at g;, ,. Correspondingly, Green’s Integral Formula becomes

Yoo , . ‘
> 4] (-9lowlp=aldg+,., | Elogip—aldy
Jj=1 ©3Q; 24
N
=Y e[ (1-Ologlp—aidg+9j., | élogip~q!dq§
j=t én; Con;
=n(p)é(p), PEN+N, qeo, 4)

where ¢, and ¢; denote ¢(g;) and ¢’(g,), respectively. A system of linear algebraic
equations in the unknown ¢; and ¢} can now be generated by collocating Eq. (4) at
each of the points p=g;.

A more accurate approximation of the solution to the boundary integral equations
can be obtained using the quadratic BIE (QBIE) method [13]. In this approach, on
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each interval 602;, j=1,.,N, ¢ and ¢' are approximated by piecewise-quadratic
functions,

¢=M¢) ¢(‘Iz_;— )+ M (&) #(q+;) + M,(8) ¢(42;+ )
¢' =M, () ¢'(‘I2j— 1)+ M, (%) ¢’(‘12j) +M;($) ¢'(q25-1)

where g,;_, and g,;,, are the endpoints of d2;, g,; is the midpoint of 62, £ is a
linear function which increases from zero at g,;_, to unity at ¢,;_,, and

M()=1-3¢+28,
M,y(&) =4 — 48,
My(&)=—¢—2¢.

On the basis of these approximations the Integral Formula becomes

N
,2;1 brio V[li(é) log' | p — gl dg + ¢2,~LQ'M2(5) log' | p— q| dg
# oy | MiQlog' | p—qlda|
9q;

,.

N
— X o[ Mi@)log|p—qidg + s |
29;

Jj=1

M,(&)log|p—qldq

69;

+ [ MO loglp—qlda|
o9,

=n(p)d(p), PEN+IN, qEN. ()

A system of linear algebraic equations in the unknown ¢; and ¢; can now be
generated by applying formula (5) to each of the points p = g;, j = I...., 2N. Thus, for
an N interval discretization, the QBIE method requires solution of 2N equations in
2N unknowns, whereas the CBIE and LBIE methods require solution of N equations
in N unknowns.

With the classical BIE formulation nodal points are situated only at segment
midpoints and therefore ¢’ has precisely one value at each of these nodal points.
However, with the linear and quadratic BIE formulations, nodes are situated at
segment endpoints and therefore at domain corners ¢’ has two components; one
related to each of the sides adjacent to the corner. Thus, the linear and quadratic BIE
methods are restricted to problems for which a relation of the form

¢'=ag+p (a, B given functions)

is prescribed on at least one of the sides of the corner.
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If the interval 84, is a straight-line segment, then the integrals in formuiae (3) (4
and (S5) can be evaluated exactly using

[ log'ip—qldg=1,, (&
Va8
| logip—gldg=1,, (M
CEQ;
" I 1 (&)
| Glog'ip—qldg=--(acospl, + 1), (8)
ey
|‘ b= 1 Ay
| ¢Glogip—gqldg=--(acosf/, +J), %)

CEQ;

’ , 1
| & log! {p—‘qldq=ﬁ((h—2a cos )1, —4(h—2acosB) 1, +41,), (10)

'ﬁﬂj

{. & loglp——qidq=%((h—Zacos,B)ZJl—4(h—2acosﬁ)]2+4.l3), (1H

Caq;

where

I =y, (12)
{, = asin f(log b — log a), (13}
s =asin S(h — ay sin f), (a4
J,=acosf{loga—logb)+ h(logh— 1)+ aysin f; (15
Jy=14(b*log b —a’loga) — L(b* — a*), (16)

Jy=14{(h —acos BY’ (log b — 1) + (a cos B’ (log a — 4)
+ (a sin B)* (h — aw sin B)} (17

and if g,,; and g,; denote the endpoints of 602;, Fig. 1, then a, b and # are the lengths
of the lines joining p to q,;, p to g,; and g,; to g,;, respectively, and g and v are the
angles g,;9,;p and q,; pq,;, respectively.

The analytical solutions for the integrals associated with the CBIE method, Egs.
{6) and (7}, were presented by Symm |3]. However, the integrals associated with the
LBIE and QBIE methods, Eqs. (4) and (§5), have previously been evaluated
numerically |13]. Evaluation of these integrals by the analytical expressions,
{6)-(11), requires only a fraction of the computational time taken by an accurate
numerical technique, and since for an N interval discretization each of the integrals
has to be evaluated N times for every point to which Green’s Integral Formula is
applied, it is apparent that these analytical expressions yield appreciable reductions in
the computational times required by the LBIE and QBIE methods.
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FIG. 1. Straight-line segment geometry.

To demonstrate the problems caused by the presence of boundary singularities, the
CBIE, LBIE and QBIE methods are applied to two physical problems involving L-
shaped domains.

Problem 1

This problem arises from the examination of heat flow through finned surfaces
[11], and involves an L-shaped composite of two rectangular domains, Fig. 2, having
different thermal conductivities. The temperature distribution ¢ within the domain
(4 + B), Fig. 2, is determined by simultaneously solving

V3%,=0  in region 4 (18)
and
Vi, =0 in region B (19)

subject to the boundary conditions

on 04 —k 9 =h,0,, (20i)
onAB —k 8y =h,0,, (20ii)
on BC ¢,=0, (20iii)
on CO $.=05 (20iv)
on CO k, 8, =—kyd}, (20v)
on CD =0, (20vi)
on DE kydp=h,(1 ~¢p), (20vii)
on EF 6, =0, (20viii)

on FO —kybp=h, 05, (20ix)
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where k, and k, are the thermal conductivities of regions 4 and B, respectively, and
h, and h, are the heat transfer coefficients at the surface DE and FOAB, respectively.

Applying Green’s Boundary Formula, Eq. (2), to this problem gives rise to an
integral equation involving two coupled contour integrals, one around 012,
(= O4BCO), and the other around 692, (= OCDEFO); the coupling arises through
the interface boundary conditions (20iv) and (20v). Solution of this integral equation,
by the numerical techniques described above, determines the boundary distributions
of ¢ and ¢’. Then to compute the potential ¢ at any interior point, it is only necessary
to apply Green’s Integral Formula to the boundary of the region in which that point
lies. In particular, the potential at points on the common interface OC can be
cvaluated by applying Green’s Integral Formula to either 602, or 0£2,.

One of the quantities of physical importance in this problem is the rate of heat
transfer, 0, which is given by [11],

O=h| (1-9,@)da @b
=hy[ ¢5@)dg+| ,(9)dg (22)

as there are no heat sources situated within the domain {4 + B). It is apparent from
expressions (21) and (22) that evaluation of @ only requires the boundary
distribution of ¢, and this is precisely the information obtained when the boundary
integral equation representing the problem described by Egs. (18), (19) and (20) is
solved.

Results have been obtained by application of the CBIE, LBIE and QBIE methods,
employing 50, 100 and 200 equal length boundary intervals, for the case 04 =48 =
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TABLE 1

Intervals

50 100 200

i. Problem 1: CBIE method results

Oin/Qout 5.7387 5.7346 5.7330
Qour 5.7342 5.7321 5.7317
Qin/Qout 1.0007 1.0004 1.0002

ii. Proble 1: LBIE method results

Oin 5.7084 57199 5.7260
Dot 5.7387 5.7350 5.7334
0i/Qour 0.9947 0.9973 0.9987

iti. Problem 1: QBIE method results

Oix 57129 57231 5.7280
Qour 5.7334 5.7325 5.7321
Oin/Qout 0.9964 0.9984 0.9993

iv. Problem 1: MBIE method results

O 5.7325 5.7321 5.7321
Qout 5.7330 5.7325 5.7321
Oin/Qour 0.9999 1.0000 1.0000

EF=FO=1, h;=1000, h,=10, k, =250 and k= 10. This represents a heat
exchanger comprised of copper in region A and steel in region B, with forced
convection of water along DE and free convection of air around FOAB. In Table
Li—iii, Q;x and Q,.r represent the heat transfer rates corresponding to expressions
(21) and (22), respectively; as the CBIE, LBIE and QBIE methods are based on
assumed boundary variations of ¢ and ¢’, they need not give the same values for Q,y
and Q,yy, although obviously a satisfactory solution must do so.

This problem has a singularity at the re-entrant corner O, and the results displayed
in Table li—iii clearly illustrate the slow convergence caused by the presence of this
singularity.

Problem 2

This problem arises in the study of plane potential flow through a porous medium
between impervious pins [3,5], and involves an L-shaped domain, Fig. 2, with a
singularity at the re-entrant corner O. The determination of the potential ¢ requires
solution of

Vig=0 in region (4 + B) (23)
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subject to the boundary conditions

on 04 ¢’ =0, (24i)
on AB ¢ =0, (24i1)
on BD ¢’ =0, (241
on DE =1, (24iv)
on EF ¢' =0, (249
on FO ¢ =0 {24v1)

This problem is essentially a special case of the problem

Vi,=0 in region 4, {25)
Vi, =0 in region B (286)
subject to the conditions
on 04 ¢/, =0, (271)
onA4B 0,=0, 127i1)
on BC ¢, =0, {2710}
on CO P,=9g, {27iv)
onCO k¢, =—kyo,. (27%)
on CD 0, =0, (27vi)
on DE Pp=1, {27vii)
on EF 9,=0, (27vild)
on FO 0, =0. {27ix)

Solutions to the problem described by Egs. (25), (26) and (27) have beer obtained
by application of the CBIE, LBIE and QBIE methods, employing 50, 100 and 200
equal length boundary intervals, for the case O4A =AB=EF=F0=5 and
k4= kg =1. The results presented in Tables IIi, Ilii and Iliii show the potential at the
lattice points of a unit mesh. Slow convergence, particularly in the neighbourhood of
the singularity, is again evident.

In the next section a modified BIE method is described which gives special
treatment to singular points and thereby yields, in general, considerably more
accurate solutions than those given by the CBIE, LBIE and QBIE methods.
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THE MobDIFIED BIE METHOD

Symm [3] showed that by including terms having the analytical form of the
singularity in the CBIE method, the problems caused by the presence of the
singularity can be overcome. However, this method is not directly applicable to
problems in which the singularity occurs on the interface between two regions with
different physical properties, because the analytical solution in the neighbourhood of
the singularity is represented by different expressions in the two regions. The
modifications necessary to overcome this difficulty in the case of problem 2 are now
presented. The analysis for problem 1 is very similar and therefore is not presented.

First, it is necessary to determine the analytical form of the solution in the
neighbourhood of the singular point, which is situated at the re-entrant corner O.
Employing the polar co-ordinates (r, ) in region 4, and (r, #7) in region B, Fig. 3, the
general solutions of equations (25) and (26) can be expressed as

9o (r, &)= i r*(a, cos 4,&+ b, sin A,¢), (28)
n=0

fa(rim)= 3 r*v(c,cosp,n +d,sinu,m), (29)
n=0

where the eigenvalues A, and u,, and the coefficients a,, b,, c, and d, are undeter-
mined constants dependent upon the boundary conditions.

In the neighbourhood of the singularity, the solutions (28) and (29) are subject to
the boundary conditions.

oné=0 ¢, =0, (30i)

oné=n/2,n=n $.=0g, (30ii)
oné=n/2,n=n  k,¢y=—Ks05, (30iii)
ony=0 ¢ =0, (30iv)

where ¢=0, =0 and(¢=n/2, n=n) specify the boundaries 04, OF and OC
respectively.

Enforcing conditions (30i) and (30iv), and then matching at the common interface,
using conditions (30ii) and (30iii), gives

0,(r, &) =a+Prticos A, &+ yrizcos A,& + Or'icos A&+ - 31

and

pp(r, ) =a* + f*r*icos A, n + y*ritcos ,n + 8*rticos A + -+, (32)
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Fic. 3. Re-entrant corner neighbourhocod

where a, f, 7 and & are unknown contants, and

a* =a,
B* =f cos A, m/cos A,(7n/2),

v* =vycosi,m/cos A,m,

0% = -0,
Ay,=26,2(1—¢)2,2(1 +¢€), 22— &)y n=1, 2.,
and
1 _ kp \ V2
= n c08 (2(kA + kﬂ))

Inclusion of terms of the singular solutions (31) and (32) in the CBIE method is
performed by analogy with the method presented by Symm [3]. Functions , and w,
are defined such that

8.P)=v,(P)+f4(p), PEA+A, (33)

and

#5(p) = ywu(p) + f5(D), pPE B + 08, (34)

where
fi(p)=a+prtcos A, &+ yr'icos A, &

+rticos A8, p=(r¢), (35)

S81742°1-7
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and
So(p) = a* + B*rti cos A, n + y*r*: cos 4,7
+ &*rticos A, 1, p=(rn). (36)

Thus, the functions y, and y, are harmonic in regions 4 and B, respectively, and
satisfy the boundary conditions,

on OA v, =—f", (371)
onAB We=—fys (37ii)
on BC vy==f, (37iii)
on CO W, =Vg, (37iv)
on CO kv, =—kywy, (37v)
on CD wp=—[45, (37vi)
on DE Wp=1—fp, (37vii)
on EF wy=—14, (37viii)
on FO wp=—S%- (37ix)

Applying the CBIE method to the functions y, and y, and enforcing the boundary
conditions (37) generates a system of N linear algebraic euations in N + 4 unknowns,
including the constants a, f, y, and J. To reduce the number of unknowns to N, it is
necessary to assume that y, =0 on the intervals 1 and 2, Fig. 4, and y, =0 on the
intervals N and N — |, i.e,, in the vicinity of the singular point O, the potentials ¢,
and ¢, can be approximated by the expressions (35) and (36) for f, and f;. Solving

Fic. 4. Boundary discretization.
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this system of equations determines the boundary distributions of v and y’, and also
the constants a, 8, y and 4. The potential ¢ at any point in (4 + B) can then be
computed using appropriately discretized forms of Eq. (33) and (34).

Solutions to problem 2 have been obtained employing this modified BIE (MBIE}
method, for the case 04 =AB =EF =FO =1 and k, =k, =1, and are presented ir
Table ITiv. Comparison with the solutions obtained employing the standard BIE
methods, Tables I, ITii and Iliii, shows that the MBIE method affords a considerabie
improvement in the rate of convergence, in particular near the singularity. However,
on the boundaries 4B and DE, on which the potential is prescribed to be 0 anc |,
respectively, the LBIE and QBIE methods are more accurate than the MBIE method.

Problem 1 has also been solved employing the MBIE method, and representative
results for the case OAd =AB=EF=FO0=1, h,=1000, A, =10, k, =250 and
ky =10 are presented in Table liv. These results are significantly better than those
given by the standard BIE methods, Table li-iii. In particular, the heat transfer rates,
Q.n and Q7. converge appreciably more rapidly, and the requirement that the ratio
of @« and Q. be unity is satisfied more accurately than by the CBIE, LBIE and
QQBIE methods.

DiscussioN AND CONCLUSIONS

The MBIE method presented here enables effective treatment of two-dimensional
Laplacian problems involving singuiar points at which there is also a change of the
physical properties. Although the method is only described for problems involving L-
shaped domains, it is applicable to any such problem for which the analytical form of
the singularity can be determined. Results have been obtained for other problems and
in all cases the modified BIE method facilitated an improvement in the rate of con-
vergence.

The additional sophistication inherent in the MBIE method, while requiring
considerably more programming time than the standard BIE methods, affords
improved accuracy for modest boundary discretizations. Furthermore, for a given
number of boundary intervals, the MBIE does not require appreciably more
computational time than the CBIE and LBIE methods, and in fact only requires
between one-fourth and one-half the computationa! time of the QBIE method. This is
due to the fact that for an N interval discretization, the QBIE method generates
2N X 2N equations, whereas the CBIE, LBIE and MBIE methods only generate
N X N equations.

Although evaluation of the integrals associated with the LBIE and QBIE methods,
by the analytical expressions presented here, requires substantially less computational
time than that required by previously employed quadrature formuiae |13, these
analytical expressions are only applicable for rectilinear boundaries; for the two
problems considered in this study it has been found that the use of the analytical
expressions facilitates a reduction in the overall computational time of up to 50%,
depending upon the piecewise-approximation and the size of the discretization.
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However, it may be desirable to approximate curved boundaries by a series of
straight-line segments, and integrate over these segments exactly.

It should be noted that the MBIE method is a modification of the CBIE method.
The LBIE and QBIE methods cannot be modified, in a non-trivial way, because of
the necessity to evaluate /', and f; at the point O, where these quantities are infinite.
Further work on this aspect is at present under investigation.
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